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Abstract

In this study, an inverse algorithm based on the conjugate gradient method is applied to a steady flow over a cascade of rectangular
blades to estimate the inlet flow temperature. The objective is to study the difficulties associated with inverse heat convection problems.
Therefore, the measurement quantity has been deliberately placed at five different locations over the domain, each of them covered by a
unique flow feature. The computation shows that at very low Reynolds number, the accuracy of the inverse method is not affected by the
relative position between the estimated and measurement quantities. At a higher Reynolds number, however, the accuracy of the inverse
method strongly depends on the relative position between the two quantities. The inverse method only returns satisfactory estimation for
some cases but not others.
� 2008 Published by Elsevier Ltd.
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1. Introduction

In recent years, inverse methods have been successfully
applied to many heat conduction problems despite they
are said to be ill-posed, and the studies of inverse heat con-
duction problem (IHCP) have offered alternatives, which
can largely scale down sophisticated experimental work, to
obtain accurate thermal quantities such as heat sources,
material’s thermal properties, and boundary temperature
or heat flux distributions, in many heat conduction prob-
lems [1–5]. While there have been many reports on IHCP,
there were relatively fewer studies on inverse heat convec-
tion problems [6–11]. Among them, many studies concerned
flows over simple geometries such as pipe or channel flows
where there is no complicated flow features like thicken
boundary layers or flow separation, and there exist strong
functional dependence of the measurement quantities on
the estimated quantities [8–10]. There were only few studies
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dealing with more complicated flows such as the flow over
multiple cylinders, 3D complex duct flow, or natural con-
vection inside a cavity [6,7,11]. In these studies, however,
the locations of the estimated and measurement quantities
were so arranged, for example, very closed to heat flux
boundary, that they are actually strongly affected by heat
conduction rather than by heat convection [7,11]. Or, in
the case of natural convection inside a cavity [6], the magni-
tude of heat source, which drives the entire cavity flow, at
some points of the domain is estimated. In this instance,
the measurement quantity is strongly dependent on the mag-
nitude of heat source, thus prompting the success of an
inverse solution. To the authors’ best knowledge, there
seems to be no successfully application of inverse method
on a heat convection problem involving some flow features
which result in a weak functional dependence of the mea-
surement quantity on the estimated quantity, and there is
no paper in open literature dedicated to address the difficul-
ties facing inverse heat convection problems except for some
simple statement like ‘‘due to their mathematical complexity
as compared with the inverse heat conduction problems” [6].
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Nomenclature

C blade’s chord length (m)
H blade’s pitch length (m)
J functional
J0 gradient of functional
k thermal conductivity (W/m K)
L length of the computational domain (m)
M total number of measuring positions
P dimensionless pressure
p pressure (N/m2)
Pr Prandtl number, Pr = m/a
q direction of descent
Re Reynolds number, Re = V0C/m
Th maximum temperature (K)
Tl minimum temperature (K)
T* dimensionless temperature
u,v velocity components in x and y coordinates

(m/s)
U,V dimensionless fluid velocity components
V0 magnitude of inlet flow velocity (m/s)
X,Y dimensionless coordinate

x1,x2 length parameters
y1,y2 length parameters
D small variation quality
a fluid’s thermal diffusivity (m2/s)
b step size
c conjugate coefficient
g very small value
H* dimensionless measured temperature
h angle of attack
k variable used in adjoint problem
m kinematic viscosity (m2/s)
q fluid density (kg/m3)
r standard deviation

Superscripts

K iterative number

Subscripts
f fluid
s solid
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The success of the application of an inverse method
essentially depends on strong functional relationship
between the estimated and measurement quantities. In
problems where the functional relation between the two
quantities is weak, that is, a disturbance on the estimated
quantity hardly affects the value of measurement quantity;
an inverse solution is likely to fail. The governing equations
for steady heat conduction problems are normally elliptic
differential equations. The propagation of quantity in their
solutions is not directional, that is, a disturbance at any
point in the solution domain can reach all other points of
the domain, regardless where they are located. In other
words, all points in the solution domain, including bound-
aries, are strongly dependent on each others. Hence, the
relative positions between estimated and measurement
quantities in the solution domain is not an important issue
regarding the success of an inverse solution. The governing
equations for steady heat convection problems, on the
other hand, are parabolic differential equations. The prop-
agation of quantities in their solutions is intrinsically direc-
tional, that is, it is marching along the direction of stream.
Consequently, an upstream quantity strongly affects its
downstream quantity, whereas the downstream quantity
has little effect on its upstream quantity. Under this circum-
stance, the relative position of estimated and measurement
quantities become crucial to the success of an inverse solu-
tion. Essentially, the measurement quantity needs to be
located downstream the estimated quantity for an inverse
solution to be successful, for example, the case reported
in [9]. (In fact, the governing equations for unsteady
heat-conduction problems are also parabolic differential
equations, and the same problem might become a major
concern. However, transient heat-conduction problems
are not in the scope of this paper, thus the issue is left to
be addressed in some future paper.)

Although the issue aroused by directional propagation
could be a major concern for inverse heat convection prob-
lems, the difficulty associated with them does not just end
there. When the property of directional propagation com-
bined with some complicated flow features creates yet
another problem which might even sever the functional
link between an upstream estimated quantity and a down-
stream measurement quantity. For instance, a quantity
laid well inside a thick boundary or a separation bubble
is unlikely to be strongly influenced by another quantity
outside the boundary layer or separation bubble even the
latter is located upstream the former. Therefore, a mea-
surement quantity located in boundary layer region might
only depend weakly, through diffusion rather than convec-
tion, on an estimated quantity in free-stream region. This
might render the iterative regularization process of an
inverse method futile, and an inverse solution might be
failed largely due to this blockage on information
transmission.

To further understand the above difficulties facing the
inverse heat convection problems, we design a test case,
which contains some complicated flow features, to be
solved by an inverse method, in this case the conjugate gra-
dient method (CGM) which transforms energy equation
into an adjoint and a sensitivity equation and solves these
three equations iteratively to minimize the estimation error
[2,12–18], under various flow conditions. The test case cho-
sen is the flow over a cascade of rectangular blades, perti-
nent to turbomachine aerodynamics. Although there is
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no geometrical difference between the upper and lower
sides of a rectangular blade, a non-zero angle of attack
between the inlet flow and the blade would result in distinct
flow features on both sides of the blade. On the pressure
side (lower side), there is an attached boundary layer devel-
oping, while on the suction side (upper side), boundary
layer could separate, forming a large separation bubble,
under a high Reynolds number condition. The estimated
quantity is the inlet temperature. The measurement quan-
tity, on the other hand, is also temperature but is, respec-
tively, located in five different downstream regions, each
of them covered by some distinct flow features to allow
the effects of these flow features on the accuracy of the
inverse method to be examined.
2. Analysis

2.1. Direct problem

To illustrate the methodology for developing expres-
sions for use in determining the unknown space-varying
inlet temperature, we consider the following steady heat
transfer problem.

Fig. 1 shows the geometry of the computational domain
which surrounds the rectangular blade and extends, in the
cross-stream direction, from the middle of one passage to
the middle of the adjacent one. The domain also extends
to a distance, in this case 0.3 chord lengths upstream and
2 chord lengths downstream the blade. The angle of attack
for the inlet flow is h, and the profile of inlet temperature
distributions is Tin(y). To simulate the effect of cooling fluid
inside the blade, an imaginary boundary of zero thickness
is placed at the center of the rectangular blade where min-
imum temperature Tl is maintained. On the surface of the
blade, non-slip condition is assumed for the momentum
equations. In terms of energy equation, however, the sur-
face is actually a solid/fluid interface, and conjugate heat
transfer takes place there. In current study, all physical
properties of the solid and fluid materials are assumed to
be constant, and gravity and buoyancy are not considered
for simplicity. Therefore, this is a forced-convection heat
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Fig. 1. Schematic of the blade configuration.
transfer problem. To this end, the steady two-dimensional
governing equations and boundary conditions for the test
case can be written as Navier–Stokes equations:
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¼ 0; ð1Þ
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Energy equation:

For fluid:

u
oT f

ox
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oT f
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¼ a
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ox2
þ o2T f
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� �
; ð4Þ

For solid:

o2T s

ox2
þ o2T s

oy2
¼ 0: ð5Þ

Boundary conditions:

Inlet:

u ¼ V 0 cos h; v ¼ V 0 sin h; T ¼ T inðyÞ; ð6Þ

Outlet:
o/
ox
¼ 0; / ¼ u; v; T ; ð7Þ

Periodical boundaries:
/ðx; 0Þ ¼ /ðx;HÞ; / ¼ u; v; T ; ð8Þ
Solid/fluid interface:

u ¼ v ¼ 0; T f ¼ T s; and kf

oT f

on
¼ ks

oT s

on
; ð9Þ

where n is the direction normal to the surface. Finally, for
the imaginary boundary inside the solid blade:
Blade center:

T s ¼ T l: ð10Þ
By introducing the following dimensionless parameters,

X ¼ x=C; Y ¼ y=C; U ¼ u=V 0; V ¼ v=V 0;

P ¼ p
1
2
qV 2

0

; T � ¼ T=ðT h � T lÞ; ð11Þ

where Th and Tl are the maximum and minimum tempera-
tures, respectively, Eqs. (1)–(10) become:
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oU
oX
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oY
¼ 0; ð12Þ
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U
oT �f
oX
þ V

oT �f
oY
¼ 1

Pr � Re
o2T �f
oX 2
þ o2T �f

oY 2

� �
; ð15Þ

o2T �s
oX 2
þ o2T �s

oY 2
¼ 0; ð16Þ

U ¼ cos h; V ¼ sin h;

and T �f ð0; Y Þ ¼ T �inðY Þ; at X ¼ 0; ð17Þ
oU
oX
¼ oV

oX
¼ 0;

oT �f
oX
¼ 0; at X ¼ L=C; ð18Þ

UðX ; 0Þ ¼ UðX ;H=CÞ; V ðX ; 0Þ ¼ V ðX ;H=CÞ;
T �f ðX ; 0Þ ¼ T �f ðX ;H=CÞ; ð19Þ

U ¼ V ¼ 0; T �f ¼ T �s ; and kf
oT �f
oX
¼ ks

oT �s
oX

;

at X ¼ x1=C and X ¼ x2=C; ð20Þ

U ¼ V ¼ 0; T �f ¼ T �s ; and kf

oT �f
oY
¼ ks

oT �s
oY

;

at Y ¼ y1=C and Y ¼ y2=C; ð21Þ

where Re and Pr are Reynolds number and Prandtl num-
ber, and the subscripts f and s refer to the regions of fluid
and solid, respectively. Since the velocity field is assumed
not to be affected by temperature variation in a forced-con-
vection problem, Eqs. (12)–(14) are solved independently
prior to the inverse calculation. In terms of the inverse cal-
culation, the direct problem only involves the energy Eqs.
(15) and (16) and their boundary conditions. Here, the di-
rect problem is concerned with the determination of the
medium temperature when the space-varying inlet temper-
ature T �inðY Þ, thermal properties, and boundary conditions
are known.

2.2. Inverse problem

For the inverse problem, the space-varying inlet tempera-
ture T �inðY Þ is regarded as being unknown, while everything
else in Eqs. (15)–(21) is known. In addition, temperature
readings at measurement locations are considered available.
The objective of the inverse analysis is to predict the
unknown space-varying inlet temperature T �inðY Þ from
knowledge of these temperature readings. Let the measured
temperature at the measurement positions be denoted by
H*(X,Y). Then this inverse problem can be stated as follows:
by utilizing the above mentioned measured temperature data
H*(X,Y), the unknown T �inðY Þ is to be estimated over the
specified domain.

The solution of the present inverse problem is to be
obtained in such a way that the following functional is
minimized:
J ½T �inðY Þ� ¼
XM

i¼1

½T �f ðX i; Y iÞ �H�ðX i; Y iÞ�2; ð22Þ

here the subscript i refers to the ith temperature measuring
position, M is the total number of measuring positions,
and T �f ðX i; Y iÞ is the estimated (or computed) temperature
at the measurement location (X,Y) = (Xi,Yi). These quanti-
ties are determined from the solution of the direct problem
given previously by using an estimated ~T �Kin ðY Þ for the exact
T �inðY Þ. Here eT �Kin ðY Þ denotes the estimated quantities at the
Kth iteration.

2.3. Conjugate gradient method for minimization

The following iteration process based on the conjugate
gradient method is now used for the estimation of T �inðY Þ
by minimizing the above functional J ½T �inðY Þ�

eT �Kþ1
in ðY Þ ¼ eT �Kin ðY Þ � bKqKðY Þ;K ¼ 0; 1; 2; . . . ; ð23Þ

where bK is the search step size in going from iteration K to
iteration K + 1, and qK is the direction of descent (i.e.,
search direction) given by

qKðY Þ ¼ J 0KðY Þ þ cKqK�1ðY Þ; ð24Þ

which is conjugation of the gradient direction J0K(Y) at iter-
ation K and the direction of descent qK�1(Y) at iteration
K � 1. The conjugate coefficient cK is determined from

cK ¼
R H=C

Y¼0
½J 0KðY Þ�2dYR H=C

Y¼0 ½J
0K�1ðY Þ�2dY

with c0 ¼ 0: ð25Þ

The convergence of the above iterative procedure in mini-
mizing the functional J is proved in [2]. To perform the iter-
ations according to Eq. (23), we need to compute the step
size bK and the gradient of the functional J0K(Y). In order
to develop expressions for the determination of these two
quantities, a ‘‘sensitivity problem” and an ‘‘adjoint prob-
lem” are constructed as described below.

3. Sensitivity problem and search step size

The sensitivity problem is obtained from the original
direct problem defined by Eqs. (15)–(21) in the following
manner. It is assumed that when T �inðY Þ undergoes a varia-
tion DT �inðY Þ; T �f ðX ; Y Þ and T �s ðX ; Y Þ are perturbed by
DT �f ðX ; Y Þ and DT �s ðX ; Y Þ, respectively. Then replacing
in the direct problem T �in by T �in þ DT �in; T

�
f and T �s by

T �f þ DT �f and T �s þ DT �s , subtracting from the resulting
expressions the direct problem, and neglecting the second-
order terms, the following sensitivity problem for the sensi-
tivity functions DT �f and DT �s can be obtained:

1

Pr � Re
o

2DT �f
oX 2

þ o
2DT �f
oY 2

� �
¼ U

oDT �f
oX
þ V

oDT �f
oY

; ð26Þ

o2DT �s
oX 2

þ o2DT �s
oY 2

¼ 0; ð27Þ
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DT �f ð0; Y Þ ¼ DT �inðY Þ; at X ¼ 0; ð28Þ

oDT �f
ox
¼ 0; at x ¼ L=C; ð29Þ

DT �f ðX ; 0Þ ¼ DT �f ðX ;H=CÞ; ð30Þ

DT �f ¼ DT �s and kf

oDT �f
oX

¼ ks

oDT �s
oX

;

at X ¼ x1=C and X ¼ x2=C; ð31Þ

DT �f ¼ DT �s and kf

oDT �f
oY
¼ ks

oDT �s
oY

;

at Y ¼ y1=C and Y ¼ y2=C: ð32Þ

The sensitivity problem of Eqs. (26)–(32) can be solved by
the same method as the direct problem.

The functional J ½eT �Kþ1
in ðY Þ� for iteration K + 1 is

obtained by rewriting Eq. (22) as

J ½eT �Kþ1
in ðY Þ� ¼

Z H=C

Y¼0

Z L=C

X¼0

T �f ðeT �Kin � bKqKÞ �H�ðX ; Y Þ
h i2

� dðX � X iÞ � dðY � Y iÞdX dY ; ð33Þ

where we replace eT �Kþ1
in by the expression given by Eq. (23),

and d is the Dirac function which enforces the source term
only appearing at (Xi,Yi). If temperature T �f ðeT �Kin � bKqKÞis
linearized by a Taylor expansion, Eq. (33) takes the form

J ½eT �Kþ1
in ðY Þ� ¼

Z H=C

Y¼0

Z L=C

X¼0

½T �f ðeT �Kin Þ � bKDT �f ðqKÞ

�H�ðX ; Y Þ�2 � dðX � X iÞ � dðY � Y iÞdX dY

ð34Þ

where T �f ðeT �Kin Þ is the solution of the direct problem at
(X,Y) = (Xi,Yi) by using estimate eT �Kin ðY Þ for exact T �inðY Þ.
The sensitivity function DT �f ðqKÞ is taken as the solution of
Eqs. (26)–(32) at the measured position (X,Y) = (Xi,Yi) by
letting DT �inðY Þ ¼ qKðY Þ [13]. The search step size bK is deter-
mined by minimizing the functional given by Eq. (34) with
respect to bK. The following expression results:
bK ¼
R H=C

Y¼0

R L=C
X¼0

DT �f ðqKÞ½T �f ðeT �Kin Þ�H�� �dðX �X iÞ �dðY �Y iÞdX dYR H=C
Y¼0

R L=C
X¼0½DT �f ðqKÞ�2 �dðX �X iÞ �dðY �Y iÞdX dY

:

ð35Þ
3.1. Adjoint problem and gradient equation

To obtain the adjoint problem, Eqs. (15) and (16) are
multiplied by the Lagrange multipliers (or adjoint func-
tions) k�f and k�s , respectively, and the resulting expressions
are integrated over the correspondent space domains. Then
the result is added to the right hand side of Eq. (22) to yield
the following expression for the functional J ½T �inðY Þ�:
J ½T �inðY Þ� ¼
Z H=C
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ð36Þ

The variation DJ is obtained by perturbing T �inðY Þ by
DT �inðY Þ; T �f ðX ; Y Þ by DT �f ðX ; Y Þ; and T �s ðX ; Y Þ by DT �s
ðX ; Y Þ in Eq. (36), subtracting from the resulting expression
the original Eq. (36) and neglecting the second-order terms.
We thus find
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dX dY ; ð37Þ

where d is the Dirac function. Utilizing the boundary condi-
tions of the sensitivity problem, we can integrate the second
to the fourth double integral terms in Eq. (37) by parts. Then
DJ is allowed to go to zero. The vanishing of the integrands
containing DT �f and DT �s leads to the following adjoint
problem for the determination of k�f ðX ; Y Þ and k�s ðX ; Y Þ:

� U
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2k�f
oX 2
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oY 2

Þ

þ 2½T �f �H�� � dðX � X iÞ � dðY � Y iÞ;
ð38Þ
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o2k�s
oX 2
þ o2k�s

oY 2
¼ 0; ð39Þ

k�f ¼ 0; at X ¼ 0; ð40Þ
1

Pr � Re
ok�f
oX
þ Uk�f ¼ 0; at X ¼ L=C; ð41Þ

k�f ðX ; 0Þ ¼ k�f ðX ;H=CÞ; ð42Þ
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Pr � Re
k�f ¼ kfk

�
s and

1

Pr � Re
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oX
þ Uk�f ¼

ok�s
oX

;

at X ¼ x1=C and X ¼ x2=C; ð43Þ
ks

Pr � Re
k�f ¼ kfk

�
s and

1

Pr � Re
ok�f
oY
þ V k�f ¼

ok�s
oY

;

at Y ¼ y1=C and Y ¼ y2=C: ð44Þ

One needs to note that in the case of measurement points
located in the solid region, the source term 2½T �f �H�� �
dðX � X iÞ � dðY � Y iÞ will appear at the left hand side of
Eq. (39) instead of in Eq. (38). Here, the adjoint problem
is solved by the same method as the direct problem.

Finally the following integral term is left

DJ ¼
Z H=C

Y¼0

1

Pr � Re
ok�f ð0; Y Þ

oX
þ Uk�f ð0; Y Þ

� �
� DT �inðY ÞdY :

ð45Þ

From the definition used in the reference [2], we have

DJ ¼
Z H=C

Y¼0

J 0ðY Þ � DT �inðY ÞdY ; ð46Þ

where J0(Y) is the gradient of the functional J ½T �inðY Þ�, a
comparison of Eqs. (45) and (46) leads to the following
form:

J 0ðY Þ ¼ 1

Pr � Re
ok�f ð0; Y Þ

oX
þ Uk�f ð0; Y Þ: ð47Þ
3.2. Stopping criteria

If the problem contains no measurement errors, the tra-
ditional convergence condition for the minimization of the
criterion is:

JðeT �Kþ1
in Þ < g; ð48Þ

where g is a small specified number, can be used as the
stopping criterion. However, the observed temperature
information contains measurement errors; as a result, the
inverse solution will tend to approach the perturbed input
data, and the solution will exhibit oscillatory behavior as
the number of iteration is increased [19]. Computational
experience has shown that it is advisable to use the discrep-
ancy principle [20] for determining the iteration process in
the regular method. Assuming T �f �H� ffi r, the stopping
criteria g by the discrepancy principle can be obtained from
Eq. (22) as

g ¼ Mr2; ð49Þ
where r is the standard deviation of the measurement er-
ror. Then the stopping criterion is given by Eq. (48) with
g determined from Eq. (49).

3.3. Computational procedure

The computational procedure for the solution of this
inverse problem may be summarizes as follows:

Suppose eT �Kin ðY Þ is available at iteration K.

Step 1. Solve the direct problem given by Eqs. (15)–(21)
for T �f ðX ; Y Þ and T �s ðX ; Y Þ, respectively.

Step 2. Examine the stopping criterion given by Eq. (48)
with g given by Eq. (49). Continue if not satisfied.

Step 3. Solve the adjoint problem given by Eqs. (38)–(44)
for k�f ðX ; Y Þ and k�s ðX ; Y Þ, respectively.

Step 4. Compute the gradient of the functional J0(Y) from
Eq. (47).

Step 5. Compute the conjugate coefficient cK and direction
of decent qK(Y) from Eqs. (25) and (24),
respectively.

Step 6. Set DT �inðY Þ ¼ qKðY Þ and solve the sensitivity prob-
lem given by Eqs. (26)–(32) for DT �f ðX ; Y Þ and
DT �s ðX ; Y Þ, respectively.

Step 7. Compute the search step size bK from Eq. (35).
Step 8. Compute the new estimation for eT �Kþ1

in ðyÞ from Eq.
(23) and return to Step 1.

4. Results and discussion

It is intended, in this paper, to identify the difficulties
facing inverse convection problem but not to study the flow
over the rectangular blade. Therefore, only few flow condi-
tions, which allow some distinct flow features near the
blade to be developed, are investigated. In all, there are
only three flow conditions where h is fixed at 10 degree,
and the Reynolds numbers are 1, 100, and 500, respec-
tively. Also, the pitch of the blades is set to be equal to
the chord length, while the thickness of the blade t is 1/
20 of the chord length. The solid and fluid materials are
assumed to be steel and air, with thermal conductivity of
43 W/mK and 0.024 W/mK, respectively. The numerical
procedure in this paper is based on the unstructured-mesh,
fully collocated, finite-volume code, ‘USTREAM’ devel-
oped by the corresponding author. This is the descendent
of the structured-mesh, multi-block code of ‘STREAM’
[21]. The number of cells in the mesh used in this paper
is 13,000.

In terms of the cascade flow, the boundary layer on the
pressure side of the blade remains attached for all flow con-
ditions; the boundary layer on the suction side, however,
becomes separated at Re = 500 (see Fig. 3e). The estimated
quantity is the temperature distribution at the inlet as
mentioned earlier; the measurement quantity is also temper-
ature but located at five different regions, respectively
marked as positions 1–5 shown in Fig. 2, all over the domain.
Here, positions 1 and 2 are both positioned vertically and
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Fig. 2. Schematic of the five different measurement locations.
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respectively, located upstream and downstream the blade.
Position 3 is positioned horizontally and located inside the
solid material near the pressure side of the blade. Position
4 is on the pressure side, and position 5 is on the suction side;
both are positioned horizontally and inside blade’s bound-
ary layer. The purpose of the five measurement position
arrangements is to create different relative positions with
the estimated quantity. Among them, quantities at some of
the measurement positions are strongly influenced by the
convection of the upstream estimated quantity (like posi-
tions 1 and 2), but others are not (positions 3, 4, and 5). This
allows the effects of convection on the accuracy of the inverse
method to be investigated.

Fig. 3 shows the streamlines and temperature contours of
the domain at the three different Reynolds numbers. The
streamlines in Fig. 3a, c, and e, clearly show the flow pat-
terns at the three different Reynolds numbers. From the
temperature contours given in Fig. 3b, d, and f, on the other
hand, it is evident that the distributions of temperature over
the entire domain are highly dependent on Reynolds num-
ber. At low Reynolds number (Re = 1 in Fig. 3b), the effect
of convection is weak, and low temperature from the blade is
able to diffuse into a large portion of the domain, including
some upstream region of the blade. However, as Reynolds
number increases, higher temperature from the inlet has
swept through the entire domain due to stronger convection,
and lower temperature can only propagate to regions adja-
cent to and downstream of the blade but not to the upstream
region of the blade (see Fig. 3d and f). These plots clearly
demonstrate that convection becomes the predominant
mean of quantity propagation at a high Reynolds number
condition.

Comparing Eq. (15) with (38), the governing equations
of the direct and the adjoint problems for the fluid domain,
one can note that their convection terms are at different
sign. This suggests that from the point of k�f , the flow is
totally at the reverse direction of the flow viewed in the
direct problem. This is an important aspect for the regular-
ization mechanism of the inverse method, and its impor-
tance is explained as follows: Eq. (38) implies that the
magnitude of k�f over the domain is mainly generated by
the source term 2ðT �f �H�Þ at the measurement location;
in other words, k�f is fed by the disagreement between the
computed and measured temperatures at the measurement
location. The amount of the disagreement needs to be
transported back, through k�f , to where the estimated quan-
tity eT �in is located, in this case, the inlet boundary, for eT �in to
be corrected by Eq. (24). The reversed flow in the adjoint
problem happens to serve this purpose by transporting
the information back to the upstream estimated-quantity
location through convection. In a brief summary, the iter-
ative regularization process works like this: an inaccurate
upstream temperature profile eT �in produces some disagree-
ment ðT �f �H�Þ at the downstream measurement location.
This disagreement generates k�f , which is transported back
to the inlet by the reversed flow and then corrects the esti-
mated quantity eT �in. From this process, it is readily to real-
ize that the success of the whole process largely depends on
the information transmission forward and backward the
estimated and measurement locations. In a complex flow
like the current test case, the information transmission
between two locations could be hampered by some flow
features mentioned in the introduction section, and the
accuracy of the inverse solution might deteriorate as a con-
sequence. For the rest of this section, the results at the five
different measurement locations will be presented, and the
effects of flow convection on the accuracy of the inverse
method will be discussed.

Since convection plays an important role in the current
problem, we need to understand the directions of the con-
vection of quantities, especially the convection of k�f . A
streakline plot, from the aspect of k�f , with streaks originate
from the measurement location will provide a clear picture
of the convection of k�f through the domain. In the follow-
ing, only the streaklines for Re = 100 or 500 will be plotted
but not for Re = 1. This is because at very low Reynolds
number, conduction is predominant, and convection
becomes less significant or even irrelevant to the accuracy
of the inverse solutions. Fig. 4a shows the streaklines of
the measurement location 1, while Fig. 4b shows the exact
and the resulted estimation inlet temperature distributions
at three different Reynolds numbers. Here, the exact inlet
temperature distribution is assumed to be constant high
temperature, that is T �inðY Þ ¼ 1, and all inverse calculations
start from an initial guess of eT �in ¼ 0:5: In Fig. 4a, it can be
seen that streaks originated from location 1 almost cover
the entire inlet boundary, signifying that k�f generated at
the measurement location can be effectively transported
back to the inlet through convection. This largely contrib-
utes to the success of the inverse solutions as can be seen
from Fig. 4b, where the maximum difference between the
exact and estimated temperature for all Reynolds numbers
is less than 2%. The streaklines and the results of the inverse
calculation for measurement location 2 are given in Fig. 5.
Here, the streaklines for Re = 100 and 500 are, respectively,
depicted in Fig. 5a and b. Despite a portion of location 2 is
inside the blade’s wake, the streaks originate from this loca-
tion still manage to pass around the blade and reach most of



Fig. 3. Streamlines and Temperature contours over the computational domain at h = 10� and three different Reynolds numbers; (a) streamlines at Re = 1,
(b) temperature contours at Re = 1, (c) streamlines at Re = 100, (d) temperature contours at Re = 100, (e) streamlines at Re = 500, and (f) temperature
contours at Re = 500.
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estimated inlet temperature distributions at three different Reynolds
numbers; (a) streakline at Re = 100, (b) streakline at Re = 500, and (c)
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the inlet boundary similar to the case of location 1. As a
result, excellent agreement between the exact and estimated
temperatures is returned as shown in Fig. 5c.

Measurement location 3 is a special one among the five
because it is located inside the solid blade. If the inverse
method performs well at this location, it would open a wide
range of applications in turbomachine flows because the
inlet flow temperature, which is difficult to measure [22],
can be estimated with much ease by just measuring the tem-
perature inside the solid blade. Also for location 3, there is
no need to plot streaks originated from it. The k�f generated
at this location must be first transferred through diffusion
to the adjacent fluid region and then through convection
to the inlet boundary. The adjacent fluid region in this case
is the region inside the pressure side boundary layer, thus
the accuracy of the inverse solutions from this location
should be similar to that of location 4 (will be discussed
later). From another point, the results of this location
can be regarded as the baseline solution for the case with-
out direct convective transfer of k�f from the measurement
location to the estimated location. The estimated and exact
temperatures for this location are given in Fig. 6. It can be
seen that satisfactory accuracy is only maintained for
Re = 1, and accuracy deteriorates as the Reynolds number
increases. Here, the maximum error for Re = 500 reaches
17%.

The results for locations 4 and 5 are shown in Figs. 7
and 8, respectively. Figs. 7a, 8a and b indicate that the
streaks originated from both locations all concentrate to
a very small part of the inlet boundary and leave the rest
of the inlet uncovered. As a result, the inverse method only
returns accuracy solutions for both locations at Re = 1,
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and again the solution accuracy is worsening as Reynolds
number increases just like the case of location 3. In the case
of location 5, it is interesting to note that at Re = 500, only
a small portion of the streaks reach the inlet boundary, and
the rest are just circling inside the large separation region
(Fig. 8b). Consequently, the case returns the largest error,
at about 20% over-estimation, among all test cases in this
paper for the inlet temperature (see Fig. 8c). Comparing
the estimated temperatures between locations 3 and 4
(Figs. 6 and 7b), it is not surprising to see that there are
quite similar for all Reynolds numbers even though one
is inside solid, and the other is in fluid. The reasons for this
have been explained in the discussion of location 3.
5. Conclusion

A conjugate gradient inverse method has been applied
to estimate the inlet temperature distribution for the flow
over a cascade of rectangular blade pertinent to turboma-
chine aerodynamics. There exist some complex flow fea-
tures in this flow at high Reynolds number conditions
which allow the difficulties of applying the inverse method
on heat convection problems to be manifested. The accu-
racy of the inverse method is highly dependent on the rel-
ative position between estimated and measurement
quantities at higher Reynolds number. Several conclusions
can be drawn from the current investigation as follows:
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1. At very low Reynolds number, say Re = 1, the accuracy
of the inverse method is insensitive to the relative posi-
tions between the estimated and measurement quanti-
ties, and the method returns very good results at all
measurement locations. This is because heat conduction
is predominant, and there exists strong functional
dependence between estimated and measurement quan-
tities regardless their relative positions.

2. At higher Reynolds numbers, Re = 100 or 500, convec-
tive heat transfer, which is marching streamwise,
becomes more prominent than heat conduction. Strong
functional dependence of the measurement quantities on
the estimated quantity only exist for some relative posi-
tions but not others. In general, if the measurement
quantity is located in the free stream region downstream
the estimated quantity and lines up in parallel with the
later, the inverse method performs well and returns
accurate estimation. However, if the measurement quan-
tity is situated inside the blade’s boundary layer or in a
separation region, the information transmission forward
and backward the estimated and measurement quanti-
ties is limited. This seriously hampers the effectiveness
of the iterative regularization process of the inverse cal-
culation and results in the inverse method failing to pro-
duce any credible estimation for the inlet temperature.

3. Embedding measuring equipment inside the solid blade
would give rise to more or less similar result to that of
obtaining reading inside blade’s boundary layer. This
implies that it is not yet feasible, at the current stage,
to apply the conjugate gradient inverse method to turbo-
machinery flows.
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